What's new
  • Please do not post any links until you have 3 posts as they will automatically be rejected to prevent SPAM. Many words are also blocked due to being used in SPAM Messages. Thanks!

Mushkin Chronos Deluxe 120GB SSD Review

Status
Not open for further replies.

AkG

Well-known member
Joined
Oct 24, 2007
Messages
5,270
Some companies make a concerted effort to be the first to market with the latest technology and deal with any issues as they pop up while others prefer to sit back and wait until all the problems have been ironed out. Mushkin fits into the latter category and as a result, they have become known for producing stable, long lived products. Their entry into the current SATA 6 market has followed their hallmark measured approach but the end result may be something unique.

Mushkin’s Chronos lineup is composed of two separate product ranges: the Deluxe and the standard version. They both use the same SandForce SF2281 controller but the Deluxe uses high performance but expensive Toggle Mode NAND while its lower priced sibling uses ONFI 2 modules.


At face value, the Chronos Deluxe 120GB isn’t all that much different from a number of SF2281-based drives we have seen over the last few months. However, like many other Mushkin products its price is what really sets it apart from the competition. At around $255 it can still be considered a premium drive but the Chronos is actually less expensive than similar products like the Patriot Wildfire 120GB and OCZ Vertex 3 MaxIOPS.

Much like the Callisto before it, the Chronos Deluxe 120GB comes clad in a charcoal gray case which means it won’t stand out in most enclosures. While not necessarily the most striking design choice we have seen recently, it is a durable all metal case that is more than adequate in the aesthetics department.

Mushkin_Chronos_Deluxe_120GB_board_sm.jpg
Mushkin_Chronos_Deluxe_120GB_board2_sm.jpg

The interior architecture of this drive makes it look like Mushkin das taken the same approach that Patriot with the Wildfire 120GB with one entire side of the PCB (eight ICs) completely bereft of any NAND modules. All eight NAND chips reside on one side and the SF2281 controller itself is housed on the other side of the board. This means the 8 NAND chips are the same capacity and similar type as the ones found in most 240GB drives.

The eight ICs are Toshiba branded, 32nm Asynchronous Toggle Mode MLC NAND and are the same as those found in the Patriot Wildfire 120GB. While Toggle Mode 1.0 NAND which has a slightly slower interface speed of 133MB/s compared to 200MB/s for ONFi 2.x NAND.

Mushkin_Chronos_Deluxe_120GB_access_sm.jpg

Unlike the 40GB Callisto we reviewed, the Mushkin Chronos includes a 2.5” to 3.5” adapter; but does not include any additional accessories.
 
Last edited by a moderator:

AkG

Well-known member
Joined
Oct 24, 2007
Messages
5,270
Introducing the SandForce SF2000 Family

Introducing the SandForce SF2000 Family


sf_lg.jpg


As you are probably well aware by now, there are actually many different models which make up the next generation of SandForce controllers. Much like Intel’s socket 1155 i3/i5/i7 series of processors, all these different SandForce numbers represent slightly different tweaks and features, but all are basically built upon the same SF2000 foundation.

In grand total there are eight SF2000 iterations, but for the most part we won't see most of them in the retail channel. Take for example the SF2141; this is a cut down 4 channel, 24bit RS ECC, SATA 3GB/s controller which probably wont see much fan fare outside of truly budget SSDs. The easiest way to think about this one is to consider it the low end of SF2000 drives. Stepping up a level to 8 channels (and 55bit BCH ECC) but still SATA 3GB/s only is the SF2181 which you can consider the mid range of this generation. This one will probably be featured in more mid-tier next generation SSDs as it has better error correction abilities, yet cannot directly compete with the true stars of the SF200 consumer line: the SF 2281.

The only difference between the two “real” consumer grade SF2000 SATA 6G controllers most likely to be seen (the SF2281 and SF2282) is the one -the 2282- is only for extra large 512GB and higher drives (though the SF2281 can handle 512GB of NAND) and is a larger chip. These are the two flagship products as such have received all the features and all the tweaks which are going to become synonymous with the SF2000 consumer class controllers.

The other four controllers are for enterprise environments and boast features such as eMLC compatibility, Military Erase, SAS and super capacitor capabilities.

Features


enhance_lg.jpg


The SF2000 controller series is built upon the same architecture as the original SF1000 series. You get DuraWrite, RAISE and all the other features but these have all undergone enhancements and tweaking.

rs.jpg


The original SF1000 series had ECC of 24bits per 512byte sector of ECC; whereas the new controller has 55bits. The type of ECC has changed as well. The original used the more simplistic Reed-Solomon (aka “RS”) ECC code which is probably best known from its use in CDs.

bch.jpg


Compare and contrast this with the fact that the new controller uses Bose-Chaudhuri-Hocquenghem (aka “BCH”) for its ECC code; which is a more elegant version that targets individual errors. It is also faster and easier for the controller to correct these errors making for a lowered performance impact. AES encryption has also doubled from 128 to 256

sata.jpg

The most important of these new features for consumers is of course the new SATA 6Gb/s capabilities. This larger bus instantly translates into much higher sequential performance. The second generation of flagship SandForce controllers has also received a boost on the small file performance end of things thanks in no small part to a 20% increase in IOPS. The first generation SF1200 was rated for up to 50,000 IOPS whereas the new controller family has a rating of 60,000 IOPS.

The other interesting feature which all but the most basic of the SF2000 models boast is SLC NAND abilities. In the past, a manufacturer had to step up the enterprise SF1500 to get SLC compatibility but now they don't have to. Add in lowered power consumption and you can see that while the SF2000 series builds upon the same basic foundation as the previous generation, they are not all that similar when you take a closer look.
 
Last edited by a moderator:

AkG

Well-known member
Joined
Oct 24, 2007
Messages
5,270
A Look at DuraWrite, RAISE and More

A Look at DuraWrite, RAISE and More


Corsair_Force_sandforce_logi.jpg

Let’s start with the white elephant in the room and explain why this 120GB drive is in reality a 128GB drive. The Chronos Deluxe has eight 16GB NAND chips onboard which gives it a capacity of 128GB, but is seen by the OS as 120GB. Manufacturers use this to help increase IOPS performance and also extend life via wear leveling (as there are always free cells even when the drive is reported as “full”) and even durability since the drive has cells in reserve it can reassign sectors to as the “older” cells die. While 8GB worth of cells set aside for a SandForce drive is not that much compared to some previous models, this is still a lot of space.

dura.jpg


As we said, over-provisioning is usually for wear leveling and ITGC as it gives the controller extra cells to work with for keeping all the cells at about the same level of wear. However, this is actually not the main reason SandForce sets aside so much. Wear leveling is at best a secondary reason or even just a “bonus” as this over-provisioning is mainly for the Durawrite and RAISE technology.

Unlike other solid state drives which do not compress the data that is written to them, the SandForce controller does real time loss-less compression. The upside to this is not only smaller lookup tables (and thus no need for off chip cache) but also means less writes will occur to the cells. Lowering how much data is written means that less cells have to be used to perform a given task and this should also result in longer life and even fewer controller cycles being taken up with internal house cleaning (via TRIM or ITGC).

Corsair_Force_Fact5.jpg


Longevity may be a nice side effect but the real purpose of this compression is so the controller has to use fewer cells to store a given amount of data and thus has to read from fewer cells than any other drive out there (SandForce claims only .5x is written on average). The benefit to this is even at the NAND level storage itself is the bottleneck for any controller and no matter how fast the NAND is, the controller is faster. Cycles are wasted in waiting for data retrieval and if you can reduce the number of cycles wasted, the faster an SSD will be.

Compressing data and thus hopefully getting a nice little speed boost is all well and fine but as anyone who has ever lost data to corruption in a compressed file knows, reliability is much more important. Compressing data means that any potential loss to a bad or dying cell (or cells) will be magnified on these drives so SandForce needed to ensure that the data was kept as secure as possible. While all drives use ECC, to further ensure data protection SandForce implemented another layer of security.

Corsair_Force_Fact4.jpg


Data protection is where RAISE (Redundant Array of Independent Silicon Elements) comes into the equation. All modern SSDs use various error correction concepts such as ECC. This is because as with any mass produced item there are going to be bad cells while even good cells are going to die off as time goes by. Yet data cannot be lost or the end user’s experience will go from positive to negative. SandForce likes to compare RAISE to that of RAID 5, but unlike RAID 5 which uses a parity stripe, RAISE does not. SandForce does not explicitly say how it does what it does, but what they do say is on top of ECC, redundant data is striped across the array. However, since it is NOT parity data there is no added overheard incurred by calculating the parity stripe.

Corsair_Force_Fact2.jpg


According to SandForce’s documentation, not only individual bits or even pages of data can be recovered but entire BLOCKS of data can be as well. So if a cell dies or passes on bad data, the controller can compensate, pass on GOOD data, mark the cell as defective and if necessary swap out the entire block for a spare from the over-provisioning area. As we said, SandForce does not get into the nitty-gritty details of how DuraWrite or RAISE works, but the fact that it CAN do all this means that it most likely is writing a hash table along with the data.

SandForce is so sure of their controller abilities that they state the chances of data corruption are not only lower than that of other manufactures’ drives, but actually approaches ZERO chance of data corruption. This is a very bold statement, but only time will tell if their estimates are correct. In the mean time, we are willing to give the benefit of the doubt and say that at the very least data corruption is as unlikely with one of these products as it is on any modern MLC drive.
 
Last edited by a moderator:

AkG

Well-known member
Joined
Oct 24, 2007
Messages
5,270
Testing Methodology

Testing Methodology


Testing a drive is not as simple as putting together a bunch of files, dragging them onto folder on the drive in Windows and using a stopwatch to time how long the transfer takes. Rather, there are factors such as read / write speed and data burst speed to take into account. There is also the SATA controller on your motherboard and how well it works with SSDs & HDDs to think about as well. For best results you really need a dedicated hardware RAID controller w/ dedicated RAM for drives to shine. Unfortunately, most people do not have the time, inclination or monetary funds to do this. For this reason our testbed will be a more standard motherboard with no mods or high end gear added to it. This is to help replicate what you the end user’s experience will be like.

Even when the hardware issues are taken care of the software itself will have a negative or positive impact on the results. As with the hardware end of things, to obtain the absolute best results you do need to tweak your OS setup; however, just like with the hardware solution most people are not going to do this. For this reason our standard OS setup is used. However, except for the Vista load test times we have done our best to eliminate this issue by having the drive tested as a secondary drive. With the main drive being a Phoneix Pro 120GB Solid State Drive.

For synthetic tests we used a combination of ATTO Disk Benchmark, HDTach, HD Tune, Crystal Disk Benchmark, IOMeter, AS-SSD and PCMark Vanatage.

For real world benchmarks we timed how long a single 10GB rar file took to copy to and then from the devices. We also used 10gb of small files (from 100kb to 200MB) with a total 12,000 files in 400 subfolders.


For all testing a Asus P8P67 Deluxe motherboard was used, running Windows 7 64bit Ultimate edition (or Vista for boot time test). All drives were tested using AHCI mode using Intel RST 10 drivers.

All tests were run 4 times and average results are represented.

In between each test suite runs (with the exception being IOMeter which was done after every run) the drives are cleaned with either HDDerase, SaniErase or OCZ SSDToolbox and then quick formatted to make sure that they were in optimum condition for the next test suite.


Processor: Core i5 2400
Motherboard: Asus P8P67 Deluxe
Memory: 8GB Mushkin DDR3 1300
Graphics card: Asus 5550 passive
Hard Drive: 1x Seagate 3TB XT, OCZ 120GB RevoDrive
Power Supply: XFX 850


SSD FIRMWARE (unless otherwise noted):
<!--[if gte mso 9]><xml> <w:WordDocument> <w:View>Normal</w:View> <w:Zoom>0</w:Zoom> <w:punctuationKerning/> <w:ValidateAgainstSchemas/> <w:SaveIfXMLInvalid>false</w:SaveIfXMLInvalid> <w:IgnoreMixedContent>false</w:IgnoreMixedContent> <w:AlwaysShowPlaceholderText>false</w:AlwaysShowPlaceholderText> <w:Compatibility> <w:BreakWrappedTables/> <w:SnapToGridInCell/> <w:WrapTextWithPunct/> <w:UseAsianBreakRules/> <w:DontGrowAutofit/> </w:Compatibility> <w:BrowserLevel>MicrosoftInternetExplorer4</w:BrowserLevel> </w:WordDocument> </xml><![endif]--><!--[if gte mso 9]><xml> <w:LatentStyles DefLockedState="false" LatentStyleCount="156"> </w:LatentStyles> </xml><![endif]--><!--[if !mso]><object classid="clsid:38481807-CA0E-42D2-BF39-B33AF135CC4D" id=ieooui></object> <style> st1\:*{behavior:url(#ieooui) } </style> <![endif]--><!--[if gte mso 10]> <style> /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:10.0pt; font-family:"Times New Roman"; mso-ansi-language:#0400; mso-fareast-language:#0400; mso-bidi-language:#0400;} </style> <![endif]--> OCZ Vertex 2 100GB: 1.33
OCZ Vertex 3 MI 240GB: 2.11
Corsair Force 3 GT 120GB: 1.3
Patriot Pyro 120GB: 3.1.9
Patriot Wildfire 120GB: 3.1.9
Kingston HyperX 240GB: 3.2.0
Crucial M4 256GB: 002
Mushkin Chronos 120GB: 3.2.0
 
Last edited by a moderator:

AkG

Well-known member
Joined
Oct 24, 2007
Messages
5,270
Read Bandwidth / Write Performance

Read Bandwidth


For this benchmark, HDTach was used. It shows the potential read speed which you are likely to experience with these hard drives. The long test was run to give a slightly more accurate picture. We don’t put much stock in Burst speed readings and thus we no longer included it. The most important number is the Average Speed number. This number will tell you what to expect from a given drive in normal, day to day operations. The higher the average the faster your entire system will seem.

read.jpg


Considering this is a 120GB drive with only eight IC slots populated with Toggle Mode NAND, we were not surprised to see a slight reduction in sequential read performance when compared against other “enthusiast grade” drives. Even when compared against other 120GB SF2281 drives, Toggle Mode NAND drives are slightly slower at sequential read performance; however with an average of over 472 megabytes per second the Mushkin Chronos Deluxe 120GB is not a slow drive.


Write Performance


For this benchmark HD Tune Pro was used. To run the write benchmark on a drive, you must first remove all partitions from that drive and then and only then will it allow you to run this test. Unlike some other benchmarking utilities the HD Tune Pro writes across the full area of the drive, thus it easily shows any weakness a drive may have.

write.jpg


An average of basically 370 megabytes per second is a tad disappointing and so too was the minimum performance of 330.2MB/s. Even when compared against the Patriot Wildfire 120GB, these numbers are slightly reduced from what we would like to see. It could be as simple as this drive’s particular NAND characteristics being slightly different than the Wildfire’s or it could be due to the slightly different firmware revision. In either case, sequential write performance is not this drive’s forte though the results are still very fast indeed.
 
Last edited by a moderator:

AkG

Well-known member
Joined
Oct 24, 2007
Messages
5,270
ATTO Disk Benchmark

ATTO Disk Benchmark



The ATTO disk benchmark tests the drives read and write speeds using gradually larger size files. For these tests, the ATTO program was set to run from its smallest to largest value (.5KB to 8192KB) and the total length was set to 256MB. The test program then spits out an extrapolated performance figure in megabytes per second.

atto_w.jpg


atto_r.jpg


With the exception of the write curve’s midsize performance, the Wildfire 120GB and the Chronos Deluxe 120GB have very similar power curves which are both excellent.
 
Last edited by a moderator:

AkG

Well-known member
Joined
Oct 24, 2007
Messages
5,270
Crystal DiskMark / PCMark 7

Crystal DiskMark


Crystal DiskMark is designed to quickly test the performance of your hard drives. Currently, the program allows to measure sequential and random read/write speeds; and allows you to set the number of tests iterations to run. We left the number of tests at 5 and size at 100MB.

cdm_w.jpg


cdm_r.jpg


The Mushkin Chronos Deluxe 120GB performs admirably well across the full spectrum of Crystal DiskMark’s test suite. While the write performance is slightly lower than that of a Patriot Wildfire 120GB, the reads are slightly higher and thus to a large extent counter balance each other. In either case, this 120GB solid state drive really does help redefine what a 120GB SF2281 drive can do. It is fast, it is reasonably sized and it while expensive compared to ONFi based drives, it easily makes up for its slightly elevated price with higher performance.


PCMark 7


While there are numerous suites of tests that make up PCMark 7, only one is pertinent: the HDD Suite. The HDD Suite consists of numerous tests that try and replicate real world drive usage. Everything from how long a simulated virus scan takes to complete, to MS Vista start up time to game load time is tested in these core tests; however we do not consider this anything other than just another suite of synthetic tests. For this reason, while each test is scored individually we have opted to include only the overall score.

vantage.jpg


Interestingly enough, it appears that PCMark 7 has a slight preference for read performance over write performance. This does make sense as most real world scenarios are read intensive operations rather than write-centric. With that being said, a few points on average one way or the other is not enough to chose one drive over the other and lies well within our margin of error.
 
Last edited by a moderator:

AkG

Well-known member
Joined
Oct 24, 2007
Messages
5,270
AS-SSD / Access Time

AS-SSD


AS-SSD is designed to quickly test the performance of your drives. Currently, the program allows to measure sequential and small 4K read/write speeds as well as 4K file speed at a queue depth of 64. While its primary goal is to accurately test Solid State Drives, it does equally well on all storage mediums it just takes longer to run each test as each test reads or writes 1GB of data.

asd_w.jpg


asd_r.jpg


On first glance the write performance of the Mushkin Chronos Deluxe 120GB may seem only barely adequate; this however is due to the stiff competition in our charts. If you take a closer look it is – once again – only slightly slower that a Patriot Wildfire 120GB and these drives are the fastest 120GB SSDs we have ever tested.

Luckily, the read performance is much more cut and dry: simply phenomenal.


Access Time


To obtain an accurate reading on the read and write latency of a given drive, AS-SSD was used for this benchmark. A low number means that the drive’ data can be accessed quickly while a high number means that more time is taken trying to access different parts of the drive.

random.jpg


This does go a long way towards explaining the slightly elevated read and slightly lower write performance. The difference is extremely minor, but when dealing with drives this powerful it appears that even .002 - .003 of a MILIESECOND is enough to make an impact in synthetic test results. Honestly though, these numbers are once again well within the margin of error.
 
Last edited by a moderator:

AkG

Well-known member
Joined
Oct 24, 2007
Messages
5,270
Anvil Storage Utilities Pro

Anvil Storage Utilities Pro


Much like AS-SSD, Anvil Pro was created to quickly and easily – yet accurately – test your drives. While it is still in the Beta stages it is a versatile and powerful little program. Currently it can test numerous read / write scenarios but two in particular stand out for us: 4K queue depth of 4 and 4K queue depth of 16. A queue depth of four along with 4K sectors can be equated to what most users will experience in an OS scenario while 16 depth will be encountered only by power users and the like. We have also included the 4k queue depth 1 results to help put these two other numbers in their proper perspective. All settings were left in their default states and the test size was set to 1GB.

anvil_w.jpg


anvil_r.jpg


At this point Anvil doesn't really tell us anything new. The Mushkin Chronos Deluxe 120GB is still a very fast solid state drive and can actually compete with some 240GB products. In other words, this eight NAND chip, SF2281 based drive is a power house and it is also very reasonably priced.
 
Last edited by a moderator:

AkG

Well-known member
Joined
Oct 24, 2007
Messages
5,270
IOMETER

IOMETER


IOMeter is heavily weighted towards the server end of things, and since we here at HWC are more End User centric we will be setting and judging the results of IOMeter a little bit differently than most. To test each drive we ran 5 test runs per HDD (1,4,16,64,128 queue depth) each test having 8 parts, each part lasting 10 min w/ an additional 20 second ramp up. The 8 subparts were set to run 100% random, 80% read 20% write; testing 512b, 1k, 2k,4k,8k,16k,3xk,64k size chunks of data. When each test is finished IOMeter spits out a report, in that reports each of the 8 subtests are given a score in I/Os per second. We then take these 8 numbers add them together and divide by 8. This gives us an average score for that particular queue depth that is heavily weighted for single user environments.

iom.jpg


As with PCMark 7, IOMeter did show a slight different between this drive and other 120GB Toggle Mode drives we have looked at. However the differences are so small as to be well within error tolerances.
 
Last edited by a moderator:
Status
Not open for further replies.
Top